[Home] [Server] [About] [Statistics] [Annotation]

I-TASSER results for job id Rv3675

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]

 Input Sequence in FASTA format
 Predicted Secondary Structure
 Predicted Solvent Accessibility
 Predicted Normalized B-facotr
 Top 10 threading templates used by I-TASSER
 Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of higher value signifies a model with a high confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated. This is usually an indication that the models have a good quality because of the converged simulations.)
 Proteins structureally close to the target in PDB (as identified by TM-align

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


 Predicted function using COACH

(This section reports biological annotations of the target protein by COACH based on the I-TASSER structure prediction. COACH is a meta-server approach that combines multiple function annotation results from the COFACTOR, TM-SITE and S-SITE programs.)


  Ligand binding sites

Rank C-score Cluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.10 5 5d56E 78M Rep, Mult 11,14,18
20.06 3 1w5cD CLA Rep, Mult 16,19,20,28
30.06 3 2w6dA GDP Rep, Mult 41,42,44,45,58
40.04 2 1e7cA HLT Rep, Mult 32,38,41,45
50.04 2 1zzhB ZN Rep, Mult 47,50
60.04 2 4bntD 36E Rep, Mult 6,10
70.04 2 1izlC III Rep, Mult 13,16,17,20
80.02 1 2o012 CLA Rep, Mult 57,61,64
90.02 1 1e7aB PFL Rep, Mult 10,54,57,58
100.02 1 1gzmA C8E Rep, Mult 17,20
110.02 1 1xz3A ICF Rep, Mult 17,21,66
120.02 1 1xrmA III Rep, Mult 66,69
130.02 1 2w6dB CPL Rep, Mult 38,42,43,46,57,58,60

Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites

RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.0601zd3A0.3975.320.0740.8003.3.2.1017
20.0603gpbA0.4164.560.0370.6802.4.1.1NA
30.0603b8cA0.4344.930.1110.8243.6.3.6NA
40.0603ilwA0.4052.970.0880.5685.99.1.3NA
50.0603btaA0.4105.510.0330.8243.4.24.69NA
60.0603ixzA0.4604.590.0500.8403.6.3.10NA
70.0601mhsA0.4365.290.0670.8243.6.3.6NA
80.0601w36C0.4364.790.0680.7763.1.11.559
90.0603b8eA0.4644.780.0570.8563.6.3.9NA
100.0607reqB0.4194.580.0350.7525.4.99.2NA
110.0603c5vA0.4113.960.0470.6243.1.1.-NA
120.0601gl9B0.3515.080.0740.6885.99.1.3NA
130.0603hkzJ0.4333.930.0880.6962.7.7.624,55
140.0601ddtA0.4274.460.0560.7122.4.2.36NA
150.0601hm9B0.4025.460.0330.8322.3.1.157,2.7.7.2319,61
160.0601x75B0.4054.300.0940.6805.99.1.3NA
170.0601cqzB0.3905.380.0410.8003.3.2.10,3.3.2.3NA
180.0601eulA0.4485.160.0760.8963.6.3.8NA
190.0601ojnA0.4104.250.0540.6724.2.2.1NA

(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms

Homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
00.250.7501.740.110.864behB GO:0000184 GO:0002181 GO:0003735 GO:0005622 GO:0005829 GO:0005840 GO:0005925 GO:0006364 GO:0006412 GO:0006413 GO:0006414 GO:0006614 GO:0016020 GO:0019083 GO:0022625 GO:0030529 GO:0030687 GO:0070062 GO:0070180
10.060.3305.210.070.661a8hA GO:0000049 GO:0000166 GO:0003723 GO:0004812 GO:0004825 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006431 GO:0016874 GO:0046872
20.060.3655.630.020.791gaxA GO:0000166 GO:0002161 GO:0004812 GO:0004832 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006438 GO:0006450 GO:0016874 GO:0046872
30.060.3515.490.030.724ariA GO:0000166 GO:0002161 GO:0004812 GO:0004823 GO:0005524 GO:0005737 GO:0005829 GO:0006412 GO:0006418 GO:0006429 GO:0006450 GO:0016874
40.060.2995.660.020.641rqgA GO:0000049 GO:0000166 GO:0003723 GO:0004812 GO:0004825 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006431 GO:0016874 GO:0046872
50.060.2805.310.070.554dlpC GO:0000166 GO:0004812 GO:0004825 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006431 GO:0016874
60.060.3025.820.040.703kflA GO:0000166 GO:0000287 GO:0004812 GO:0004825 GO:0005524 GO:0005737 GO:0005829 GO:0006412 GO:0006418 GO:0006431 GO:0016874
70.060.3285.500.040.692ct8A GO:0000166 GO:0004812 GO:0004825 GO:0005524 GO:0005737 GO:0005829 GO:0006412 GO:0006418 GO:0006431 GO:0016874 GO:0046872
80.060.2904.910.060.533mi6D GO:0003824 GO:0004553 GO:0004557 GO:0005975
90.060.3584.920.050.671ffyA GO:0000166 GO:0002161 GO:0004812 GO:0004822 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006428 GO:0006450 GO:0008270 GO:0016874 GO:0046872
100.060.3415.000.090.664mw1B GO:0000166 GO:0004812 GO:0004825 GO:0005524 GO:0005737 GO:0005829 GO:0006412 GO:0006418 GO:0006431 GO:0016874
110.060.3242.640.130.423a1yA GO:0003735 GO:0005622 GO:0005840 GO:0006412 GO:0006414 GO:0030529
120.060.3445.200.040.695ah5A GO:0000166 GO:0002161 GO:0004812 GO:0004823 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006429 GO:0006450 GO:0016874
130.060.3285.460.050.661wz2A GO:0000166 GO:0002161 GO:0004812 GO:0004823 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006429 GO:0006450 GO:0016874
140.060.2934.760.040.531u0bB GO:0000166 GO:0004812 GO:0004817 GO:0005524 GO:0005737 GO:0005829 GO:0006412 GO:0006418 GO:0006423 GO:0008270 GO:0016874 GO:0046872
150.060.3675.600.030.791ileA GO:0000166 GO:0002161 GO:0004812 GO:0004822 GO:0005524 GO:0005737 GO:0006412 GO:0006418 GO:0006428 GO:0006450 GO:0008270 GO:0016874 GO:0046872
160.060.3054.850.020.555efrA GO:0009279 GO:0016020 GO:0016021 GO:0019867 GO:0071709
170.060.2992.810.140.404v6iBv GO:0002181 GO:0003735 GO:0005622 GO:0005737 GO:0005840 GO:0006414 GO:0022625 GO:0030295 GO:0030529 GO:0030687 GO:0032147 GO:0070180
180.060.2515.130.030.493o0aB GO:0000166 GO:0002161 GO:0004812 GO:0004823 GO:0005524 GO:0005737 GO:0005829 GO:0006412 GO:0006418 GO:0006429 GO:0006450 GO:0016874


Consensus prediction of GO terms
 
Molecular Function GO:0019843 GO:0005198 GO:0032550 GO:0016876 GO:0035639 GO:0032559 GO:0043169
GO-Score 0.49 0.49 0.47 0.47 0.47 0.47 0.36
Biological Processes GO:0016072 GO:0000956 GO:0034470 GO:0019080 GO:0042254 GO:0045047 GO:0032774 GO:0006613 GO:0043039 GO:0006412
GO-Score 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.47 0.42
Cellular Component GO:0031988 GO:0015934 GO:0030684 GO:1903561 GO:0022626 GO:0005924
GO-Score 0.49 0.49 0.49 0.49 0.49 0.49

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
1. J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8, 2015.
2. J Yang, Y Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.
3.A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738, 2010.
4.Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40, 2008.