[Home] [Server] [About] [Statistics] [Annotation]

I-TASSER results for job id Rv3453

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]

 Input Sequence in FASTA format
 Predicted Secondary Structure
 Predicted Solvent Accessibility
 Predicted Normalized B-facotr
 Top 10 threading templates used by I-TASSER
 Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of higher value signifies a model with a high confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated. This is usually an indication that the models have a good quality because of the converged simulations.)
 Proteins structureally close to the target in PDB (as identified by TM-align

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


 Predicted function using COACH

(This section reports biological annotations of the target protein by COACH based on the I-TASSER structure prediction. COACH is a meta-server approach that combines multiple function annotation results from the COFACTOR, TM-SITE and S-SITE programs.)


  Ligand binding sites

Rank C-score Cluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.10 4 4am2B HEM Rep, Mult 54,57,58,61,84,88,91,94
20.09 4 3s90A III Rep, Mult 44,46,49,50,53,56,57,60,63,79,93
30.05 2 5c65B 37X Rep, Mult 39,52,86,89
40.05 2 5l8gV CA Rep, Mult 64,79,82
50.05 2 2dysA DCW Rep, Mult 57,91,94
60.05 2 3aodA MIY Rep, Mult 37,38,43,46,50
70.05 2 2qveA 247 Rep, Mult 27,29,32
80.02 1 3au2A CA Rep, Mult 103,105
90.02 1 2bfnA CA Rep, Mult 27,28
100.02 1 3tyhC CU Rep, Mult 95,96
110.02 1 3a0hJ MGE Rep, Mult 60,63,64,67

Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites

RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.1941vp7B0.4512.610.0300.5543.1.11.655,57,64,83
20.0601s5jA0.5753.870.0730.9092.7.7.7NA
30.0601knpA0.5713.430.0500.8271.4.3.1636
40.0601jk0A0.5503.980.0670.8091.17.4.1NA
50.0602j62A0.5673.350.0820.7823.2.1.526,9
60.0603gnrA0.5523.630.0950.8463.2.1.2127
70.0603gnoA0.5523.630.0950.8463.2.1.21NA
80.0602oa6D0.5583.680.0400.9004.2.3.9NA
90.0602dgaA0.5493.610.0850.8363.2.1.21NA
100.0601clqA0.3994.640.0200.7272.7.7.765
110.0601yq3A0.5373.770.0650.8271.3.5.1NA
120.0603kb9A0.5883.790.1070.9274.2.3.3796,108
130.0601qleC0.5504.120.0470.8821.9.3.155
140.0603ckeD0.5563.710.0400.9004.2.3.9NA
150.0601dgpA0.5513.770.0300.9004.2.3.9,4.1.99.7NA
160.0602jguA0.5793.660.0730.8732.7.7.758
170.0601kf6A0.5593.710.1150.8271.3.99.1NA
180.0601tgoA0.5733.910.0550.8822.7.7.734,56
190.0601chuA0.5723.670.0600.8361.4.3.1632
200.0601jnrA0.5603.940.0860.8551.8.99.2NA

(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms

Homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
00.120.3633.430.030.523ucsC GO:0003677 GO:0003681 GO:0005737 GO:0006457 GO:0009295 GO:0051082
10.080.5652.860.080.743uo2B GO:0005739 GO:0005743 GO:0005758 GO:0005759 GO:0006457 GO:0006626 GO:0009060 GO:0016226 GO:0051087 GO:0051259
20.080.6322.980.070.843uo3A GO:0005739 GO:0005743 GO:0005758 GO:0005759 GO:0006457 GO:0006626 GO:0009060 GO:0016226 GO:0051087 GO:0051259
30.070.5803.660.030.883w9iF GO:0005215 GO:0005886 GO:0006810 GO:0006855 GO:0015238 GO:0016020 GO:0016021 GO:0046677
40.070.6192.820.060.801fpoA GO:0005829 GO:0006457 GO:0016226 GO:0051087 GO:0051259 GO:0097428 GO:1990230
50.070.6242.570.070.784it5B GO:0006457 GO:0016226 GO:0051087 GO:0051259
60.070.6053.430.040.892v50D GO:0005215 GO:0005886 GO:0006810 GO:0006855 GO:0015238 GO:0016020 GO:0016021 GO:0046677
70.070.6043.060.090.803bvoA GO:0005634 GO:0005737 GO:0005739 GO:0006457 GO:0016226 GO:0046872 GO:0051087 GO:0051259
80.070.4963.540.040.712yk0A GO:0004872 GO:0009405 GO:0016020 GO:0016021 GO:0046872
90.060.4174.610.030.712d3aA GO:0000166 GO:0003824 GO:0004356 GO:0005524 GO:0005737 GO:0006542 GO:0006807 GO:0016874
100.060.4593.220.030.602nnuA GO:0000166 GO:0003677 GO:0003700 GO:0006260 GO:0006275 GO:0006351 GO:0006355 GO:0016032 GO:0042025 GO:0044163
110.060.4273.990.100.622ej7A GO:0070062
120.060.3854.970.100.714zhtA GO:0000166 GO:0003824 GO:0004553 GO:0005524 GO:0005737 GO:0005829 GO:0006045 GO:0006047 GO:0006054 GO:0007155 GO:0008152 GO:0008761 GO:0009384 GO:0016301 GO:0016310 GO:0016740 GO:0016787 GO:0046835 GO:0046872
130.060.3994.140.080.653f7jA GO:0016491 GO:0043892 GO:0055114
140.060.6243.260.070.903jd8A GO:0001618 GO:0004872 GO:0004888 GO:0005319 GO:0005576 GO:0005635 GO:0005764 GO:0005765 GO:0005768 GO:0005783 GO:0005794 GO:0005886 GO:0005887 GO:0006486 GO:0006629 GO:0006897 GO:0006914 GO:0007041 GO:0007165 GO:0007628 GO:0008202 GO:0008203 GO:0008206 GO:0015248 GO:0015485 GO:0016020 GO:0016021 GO:0016032 GO:0016242 GO:0030301 GO:0031579 GO:0031902 GO:0031982 GO:0033344 GO:0042493 GO:0042632 GO:0045121 GO:0046686 GO:0046718 GO:0048471 GO:0060548 GO:0070062 GO:0071383 GO:0071404 GO:0090150 GO:2000189
150.060.3783.830.040.602xhsA GO:0000976 GO:0001077 GO:0002165 GO:0003677 GO:0003682 GO:0003700 GO:0003707 GO:0003712 GO:0004879 GO:0005634 GO:0005737 GO:0006351 GO:0006355 GO:0006357 GO:0006366 GO:0007365 GO:0007480 GO:0007552 GO:0008134 GO:0008219 GO:0008270 GO:0009725 GO:0010906 GO:0016319 GO:0016322 GO:0035071 GO:0035073 GO:0035074 GO:0035075 GO:0035626 GO:0040034 GO:0042048 GO:0043401 GO:0043565 GO:0045944 GO:0046872 GO:0046982 GO:0048813 GO:0055088 GO:0090575
160.060.3804.340.040.633mxaA
170.060.3424.870.090.663qntA GO:0005886 GO:0006629 GO:0006695 GO:0008144 GO:0008202 GO:0008203 GO:0015918 GO:0016020 GO:0016021 GO:0016324 GO:0017137 GO:0030299 GO:0030301 GO:0030659 GO:0031410 GO:0031489 GO:0031526 GO:0042157 GO:0042493
180.060.2915.240.070.624zbgA GO:0008080 GO:0016740


Consensus prediction of GO terms
 
Molecular Function GO:0005515
GO-Score 0.42
Biological Processes GO:0031163 GO:0006790 GO:0051188 GO:0006461 GO:0006457 GO:0006839 GO:0006605 GO:0045333 GO:0072655 GO:0007005
GO-Score 0.42 0.42 0.42 0.42 0.31 0.31 0.31 0.31 0.31 0.31
Cellular Component GO:0031966 GO:0070013 GO:0031970 GO:0019866
GO-Score 0.31 0.31 0.31 0.31

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
1. J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8, 2015.
2. J Yang, Y Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.
3.A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738, 2010.
4.Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40, 2008.