[Home] [Server] [About] [Statistics] [Annotation]

I-TASSER results for job id Rv3196

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]

 Input Sequence in FASTA format
 Predicted Secondary Structure
 Predicted Solvent Accessibility
 Predicted Normalized B-facotr
 Top 10 threading templates used by I-TASSER
 Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of higher value signifies a model with a high confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated. This is usually an indication that the models have a good quality because of the converged simulations.)
 Proteins structureally close to the target in PDB (as identified by TM-align

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


 Predicted function using COACH

(This section reports biological annotations of the target protein by COACH based on the I-TASSER structure prediction. COACH is a meta-server approach that combines multiple function annotation results from the COFACTOR, TM-SITE and S-SITE programs.)


  Ligand binding sites

Rank C-score Cluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.46 18 4bs9A ZN Rep, Mult 208,211,297,299
20.05 2 3h9gC III Rep, Mult 187,188,189,196,198,276
30.02 1 1zud4 III Rep, Mult 128,164,171,189,190,194,196,212,213,214,276,287,289,290,292,294,295,296
40.02 1 3h9jA III Rep, Mult 276,278,287

Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites

RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.1221jwbB0.4982.910.1150.5722.7.7.-166
20.0661zkmA0.4953.560.1160.5922.7.7.-166
30.0601p8jA0.3775.870.0640.5453.4.21.75NA
40.0601sy7A0.4006.060.0390.6321.11.1.6185,254
50.0603ga0A0.3774.370.0710.5021.1.1.-NA
60.0602jfdA0.2396.760.0310.4152.3.1.85178
70.0601gytJ0.3806.130.0440.6293.4.11.1NA
80.0602vz8B0.4265.550.0770.6192.3.1.85NA
90.0601v8bC0.3645.120.0430.5153.3.1.1164
100.0601vj5A0.3846.360.0300.6553.3.2.10,3.3.2.3NA
110.0601z7eD0.4235.750.0640.6392.1.2.-,1.1.1.-NA
120.0602fu3B0.4185.840.0680.6522.7.7.-NA
130.0602blnA0.2915.430.0620.4282.1.1.2NA
140.0602vz8A0.4145.970.0930.6662.3.1.85NA
150.0602ajtA0.3886.070.0320.6195.3.1.4NA
160.0601sy7B0.3966.750.0420.7091.11.1.6165
170.0602x58A0.3925.790.0840.6155.3.3.8,4.2.1.17,1.1.1.35165
180.0601lnsA0.4405.760.0390.6893.4.14.11NA
190.0602hxgA0.3825.650.0350.5855.3.1.4207
200.0601jqnA0.3816.240.0510.6254.1.1.31255
210.0602gsdA0.3814.650.0560.5221.2.1.43NA

(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms

Homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
00.400.6454.400.140.873h5aC GO:0000166 GO:0005524 GO:0008641 GO:0046872
10.330.4953.610.110.591zfnA GO:0000166 GO:0000287 GO:0005524 GO:0005829 GO:0006464 GO:0008270 GO:0008641 GO:0009228 GO:0009229 GO:0016740 GO:0016779 GO:0046872
20.280.4992.890.120.571jw9B GO:0000166 GO:0000287 GO:0005524 GO:0005829 GO:0006464 GO:0006777 GO:0008270 GO:0008641 GO:0016740 GO:0016779 GO:0046872 GO:0061605
30.190.8511.430.170.894bs9A GO:0046872
40.190.8451.910.160.914v1tB GO:0000166 GO:0046872
50.070.6133.800.140.765ff5A GO:0008641
60.070.5314.170.070.674ii3A GO:0000166 GO:0000287 GO:0004839 GO:0004842 GO:0005524 GO:0005634 GO:0005737 GO:0005829 GO:0006464 GO:0008641 GO:0016567 GO:0016874 GO:0019941
70.070.5354.090.060.673cmmC GO:0000166 GO:0004839 GO:0004842 GO:0005524 GO:0005634 GO:0005737 GO:0005829 GO:0006464 GO:0008641 GO:0016567 GO:0016874 GO:0019941
80.070.5153.540.100.622nvuB GO:0000166 GO:0000278 GO:0005524 GO:0005634 GO:0005829 GO:0006464 GO:0006508 GO:0007049 GO:0007113 GO:0008641 GO:0016874 GO:0016881 GO:0016922 GO:0019781 GO:0038061 GO:0045116 GO:0045892 GO:0046982 GO:0051726
90.070.4933.490.100.592nvuA GO:0005634 GO:0005737 GO:0005829 GO:0005886 GO:0006915 GO:0007049 GO:0007165 GO:0008641 GO:0016020 GO:0019781 GO:0031625 GO:0033314 GO:0042981 GO:0043523 GO:0045116 GO:0046982 GO:0051402
100.070.5043.580.080.604gslA GO:0000407 GO:0000422 GO:0005737 GO:0005829 GO:0006501 GO:0006810 GO:0006914 GO:0006995 GO:0008641 GO:0015031 GO:0016020 GO:0016236 GO:0019778 GO:0019779 GO:0030163 GO:0032258 GO:0032446 GO:0034727 GO:0044805 GO:0097632
110.070.4863.380.100.574gskB GO:0000407 GO:0000422 GO:0005737 GO:0005829 GO:0006501 GO:0006810 GO:0006914 GO:0006995 GO:0008641 GO:0015031 GO:0016020 GO:0016236 GO:0019778 GO:0019779 GO:0030163 GO:0032258 GO:0032446 GO:0034727 GO:0044805 GO:0097632
120.070.4853.690.140.593kydB GO:0000166 GO:0005524 GO:0005634 GO:0005654 GO:0005737 GO:0005829 GO:0008047 GO:0008134 GO:0008641 GO:0016874 GO:0016925 GO:0019948 GO:0031510 GO:0043085 GO:0046872 GO:0046982
130.070.4682.800.150.533gucA GO:0000166 GO:0005524 GO:0005634 GO:0005737 GO:0005829 GO:0008641 GO:0033146 GO:0034976 GO:0043231 GO:0046872 GO:0061503 GO:0061504 GO:0071566 GO:0071569 GO:1990592
140.060.3634.090.090.454yedD GO:0000166 GO:0005524 GO:0005829 GO:0008641 GO:0016020 GO:0016021 GO:0016874 GO:0030955 GO:0031402 GO:0061503 GO:0061504
150.060.3195.630.050.473k6jA GO:0003857 GO:0006631 GO:0016491 GO:0046872 GO:0055114
160.060.3314.550.080.443tl2A GO:0003824 GO:0004470 GO:0005975 GO:0006099 GO:0016491 GO:0016616 GO:0019752 GO:0030060 GO:0055114
170.060.4923.280.140.583kycB GO:0000166 GO:0005524 GO:0005634 GO:0005654 GO:0005737 GO:0005829 GO:0008047 GO:0008134 GO:0008641 GO:0016874 GO:0016925 GO:0019948 GO:0031510 GO:0043085 GO:0046872 GO:0046982
180.060.4563.970.090.574p22B GO:0000166 GO:0000792 GO:0004839 GO:0004842 GO:0005524 GO:0005634 GO:0005737 GO:0005739 GO:0005765 GO:0005829 GO:0006464 GO:0006974 GO:0008641 GO:0010008 GO:0016567 GO:0016874 GO:0019941 GO:0030057 GO:0030867 GO:0044822 GO:0070062


Consensus prediction of GO terms
 
Molecular Function GO:0008641 GO:0005524 GO:0070566 GO:0008270 GO:0000287
GO-Score 0.71 0.71 0.56 0.51 0.51
Biological Processes GO:0019720 GO:0006464 GO:0009228 GO:0009229
GO-Score 0.56 0.51 0.33 0.33
Cellular Component GO:0005829
GO-Score 0.51

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
1. J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8, 2015.
2. J Yang, Y Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.
3.A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738, 2010.
4.Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40, 2008.