[Home] [Server] [About] [Statistics] [Annotation]

I-TASSER results for job id Rv2434c

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]

 Input Sequence in FASTA format
 Predicted Secondary Structure
 Predicted Solvent Accessibility
 Predicted Normalized B-facotr
 Top 10 threading templates used by I-TASSER
 Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of higher value signifies a model with a high confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated. This is usually an indication that the models have a good quality because of the converged simulations.)
 Proteins structureally close to the target in PDB (as identified by TM-align

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


 Predicted function using COACH

(This section reports biological annotations of the target protein by COACH based on the I-TASSER structure prediction. COACH is a meta-server approach that combines multiple function annotation results from the COFACTOR, TM-SITE and S-SITE programs.)


  Ligand binding sites

Rank C-score Cluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.07 4 1c9iA III Rep, Mult 183,201,202,203,208,210
20.06 3 1cgpA CMP Rep, Mult 381,393,394,396,401,402,403,404,405,412,413,414,416,453,457
30.04 2 1mz9B VDY Rep, Mult 86,89,93
40.04 2 1kflB PHE Rep, Mult 179,180,191
50.04 2 1c9iB III Rep, Mult 201,203,208,210,212
60.04 2 2ajdB UUU Rep, Mult 193,195,212
70.04 2 4z10A RCO Rep, Mult 158,161,165
80.02 1 4ukeK MG Rep, Mult 202,206
90.02 1 1lshB UPL Rep, Mult 234,279
100.02 1 3sfzA GBL Rep, Mult 127,128,142,145
110.02 1 3shfA GBL Rep, Mult 170,196,215
120.02 1 3idbB ANP Rep, Mult 305,307,308
130.02 1 1i1eA DM2 Rep, Mult 234,235,271,276,278
140.02 1 3c9iC XE Rep, Mult 300,303
150.02 1 4xk8L CLA Rep, Mult 93,125
160.02 1 1sxgA 171 Rep, Mult 153,156
170.02 1 3asoA DMU Rep, Mult 81,84

Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites

RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.0602qf7B0.2257.700.0310.3896.4.1.1NA
20.0602qf7A0.2587.590.0390.4326.4.1.1NA
30.0601g87B0.2775.920.0480.3933.2.1.4NA
40.0601ej6A0.3107.170.0440.4992.7.7.50246
50.0603btaA0.3357.430.0380.5593.4.24.69NA
60.0601jkyA0.2827.150.0550.4573.4.24.83NA
70.0601yq2A0.2667.360.0600.4373.2.1.23NA
80.0601ynnD0.3057.830.0480.5322.7.7.6264,268
90.0602q1fA0.2997.870.0640.5244.2.2.21NA
100.0602pffD0.2877.640.0070.4912.3.1.86236
110.0601ynnJ0.1446.520.0310.2232.7.7.6148,158,161
120.0602vuaA0.2006.090.0330.2933.4.24.69NA
130.0603ecqB0.2857.780.0450.4933.2.1.97NA
140.0601tj7A0.2606.760.0420.3994.3.2.1NA
150.0601eulA0.2657.120.0440.4343.6.3.8NA
160.0602o36A0.2596.550.0410.3893.4.24.15114
170.0601mc0A0.1906.670.0440.2913.1.4.17NA
180.0603hmjA0.2947.940.0440.5162.3.1.86NA
190.0602zy4F0.2616.790.0530.4074.1.1.12NA

(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms

Homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
00.220.5191.550.140.545ajiA GO:0005886 GO:0006810 GO:0006811 GO:0008381 GO:0009992 GO:0016020 GO:0016021 GO:0034220 GO:0055085
10.200.4003.910.170.473udcA GO:0005886 GO:0006810 GO:0006811 GO:0008381 GO:0009992 GO:0016020 GO:0016021 GO:0034220 GO:0055085
20.190.4143.330.130.474hw9A GO:0016020 GO:0016021 GO:0055085
30.060.2467.100.020.405flmA GO:0001047 GO:0001055 GO:0003677 GO:0003899 GO:0005665 GO:0005719 GO:0006351 GO:0006366 GO:0016740 GO:0016779
40.060.2996.820.040.465iy6A GO:0000398 GO:0000974 GO:0001055 GO:0001172 GO:0003677 GO:0003899 GO:0003968 GO:0005634 GO:0005654 GO:0005665 GO:0005730 GO:0006283 GO:0006351 GO:0006353 GO:0006355 GO:0006366 GO:0006367 GO:0006368 GO:0006370 GO:0008543 GO:0010467 GO:0016740 GO:0016779 GO:0031047 GO:0031625 GO:0033120 GO:0035019 GO:0042795 GO:0044822 GO:0046872 GO:0050434
50.060.2317.870.030.404mz0A GO:0003824 GO:0008152 GO:0016740 GO:0031177 GO:0046872
60.060.2068.250.030.384mz0B GO:0003824 GO:0008152 GO:0016740 GO:0031177 GO:0046872
70.060.2097.540.040.352pffB GO:0003824 GO:0004312 GO:0004313 GO:0004314 GO:0004318 GO:0004319 GO:0004320 GO:0004321 GO:0005811 GO:0005829 GO:0005835 GO:0006629 GO:0006631 GO:0006633 GO:0008152 GO:0016295 GO:0016296 GO:0016297 GO:0016409 GO:0016491 GO:0016740 GO:0016787 GO:0016829 GO:0019171 GO:0042759 GO:0047451 GO:0055114
80.060.1677.550.020.281pxyB GO:0003779 GO:0005737 GO:0005856 GO:0007623 GO:0046872
90.060.1816.320.040.273keaA
100.060.1345.790.050.193h0pB GO:0003824 GO:0004314 GO:0006629 GO:0006631 GO:0006633 GO:0008152 GO:0016740 GO:0016746
110.060.1705.920.050.243ptwA GO:0003824 GO:0004314 GO:0008152 GO:0016740 GO:0016746
120.060.1416.120.070.203qatA GO:0003824 GO:0004314 GO:0008152 GO:0016740 GO:0016746
130.060.1346.550.030.212cuyA GO:0003824 GO:0004314 GO:0008152 GO:0016740 GO:0016746
140.060.1345.060.040.173im9A GO:0003824 GO:0004314 GO:0006629 GO:0006631 GO:0006633 GO:0008152 GO:0016740 GO:0016746
150.060.1336.650.030.212h1yB GO:0003824 GO:0004314 GO:0008152 GO:0016740 GO:0016746
160.060.1576.250.050.233k89A GO:0003824 GO:0004314 GO:0008152 GO:0016740 GO:0016746
170.060.1586.350.050.233hjvA GO:0003824 GO:0004314 GO:0006633 GO:0008152 GO:0016740 GO:0016746
180.060.1555.480.060.213rgiA GO:0003824 GO:0004314 GO:0008152 GO:0016740


Consensus prediction of GO terms
 
Molecular Function GO:0008381
GO-Score 0.38
Biological Processes GO:0009992 GO:0034220
GO-Score 0.38 0.38
Cellular Component GO:0016021 GO:0005886
GO-Score 0.50 0.38

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
1. J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8, 2015.
2. J Yang, Y Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.
3.A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738, 2010.
4.Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40, 2008.