[Home] [Server] [About] [Statistics] [Annotation]

I-TASSER results for job id Rv2292c

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]

 Input Sequence in FASTA format
 Predicted Secondary Structure
 Predicted Solvent Accessibility
 Predicted Normalized B-facotr
 Top 10 threading templates used by I-TASSER
 Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of higher value signifies a model with a high confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated. This is usually an indication that the models have a good quality because of the converged simulations.)
 Proteins structureally close to the target in PDB (as identified by TM-align

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


 Predicted function using COACH

(This section reports biological annotations of the target protein by COACH based on the I-TASSER structure prediction. COACH is a meta-server approach that combines multiple function annotation results from the COFACTOR, TM-SITE and S-SITE programs.)


  Ligand binding sites

Rank C-score Cluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.48 23 3dp9A BIG Rep, Mult 8,9,10,11,33,34,49
20.04 2 3u40A ADN Rep, Mult 8,9,10,11
30.03 2 2xquB CVM Rep, Mult 57,61
40.02 1 3nm6B TRS Rep, Mult 9,10,11,30,49
50.02 1 3mnnG PTW Rep, Mult 61,62,65
60.02 1 1vf5S III Rep, Mult 67,68

Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites

RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.0602qttA0.6762.330.1880.9323.2.2.16NA
20.0602dwoA0.5692.960.0690.8382.7.1.105,3.1.3.4611,53
30.0603dpsF0.5602.420.1030.7572.4.2.3NA
40.0603b8eA0.6112.790.0140.9323.6.3.9NA
50.0603ixzA0.6042.730.0270.9193.6.3.10NA
60.0601u1dA0.6632.220.0910.8922.4.2.3NA
70.0601yqqA0.6402.320.1180.9192.4.2.1NA
80.0601bifA0.5503.140.0690.8513.1.3.46,2.7.1.10515,31,63
90.0603bjeA0.5922.380.1090.8652.4.2.-NA
100.0601v4nB0.6352.380.0580.9192.4.2.28NA
110.0603ipiA0.5883.270.0440.9052.5.1.-NA
120.0601wtaA0.6102.910.1130.9602.4.2.28NA
130.0601k3fA0.4983.150.1130.8382.4.2.3NA
140.0601t8rA0.6882.320.2030.9323.2.2.411
150.0602guwB0.6942.320.2000.9463.2.2.4NA
160.0601tcuC0.6242.590.0870.9322.4.2.1NA
170.0601k6mA0.5713.200.0560.8512.7.1.105,3.1.3.4631,63
180.0602p8uA0.5643.110.1130.8652.3.3.109
190.0601fpsA0.5903.320.0580.9192.5.1.1,2.5.1.10NA

(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms

Homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
00.190.8001.540.290.935dk6A GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0019284 GO:0019509
10.190.7921.440.280.924g89A GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0019284 GO:0019509
20.180.7871.290.260.893eeiA GO:0003824 GO:0008152 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0016798 GO:0019284 GO:0019509
30.180.8001.390.270.924f2pB GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0019284 GO:0019509
40.170.7771.420.310.911zosA GO:0003824 GO:0008152 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0016798 GO:0019509
50.170.7961.390.190.924wkbA GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0019284 GO:0019509
60.160.7631.210.220.864yo8B GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0009234 GO:0016787 GO:0019509 GO:0102246
70.160.7741.360.290.884l0mA GO:0003824 GO:0008152 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0016798 GO:0019509
80.160.7941.250.190.914jwtA GO:0003824 GO:0008152 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0016798 GO:0019509
90.150.7571.430.230.883bl6A GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0019284 GO:0019509
100.140.7711.800.280.934qezB GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0019284 GO:0019509
110.140.6982.340.200.951t8rA GO:0003824 GO:0005829 GO:0008152 GO:0008714 GO:0009116 GO:0016787 GO:0044209 GO:0046033
120.130.7591.250.190.864josB GO:0003824 GO:0008152 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0009164 GO:0016787 GO:0016798 GO:0019509
130.120.6942.320.200.952guwB GO:0003824 GO:0008152 GO:0008714 GO:0009116 GO:0016787 GO:0016798 GO:0044209 GO:0046033
140.120.6892.010.200.893of3A GO:0003824 GO:0004731 GO:0006139 GO:0009116 GO:0016740 GO:0016757 GO:0016763 GO:0042278
150.120.6762.330.190.932qttA GO:0000003 GO:0001944 GO:0003824 GO:0005829 GO:0005886 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0016787 GO:0019509
160.120.6861.990.200.893occD GO:0003824 GO:0004731 GO:0006139 GO:0009116 GO:0016740 GO:0016757 GO:0016763 GO:0042278
170.100.6782.310.200.933bsfA GO:0000003 GO:0001944 GO:0003824 GO:0008652 GO:0008782 GO:0008930 GO:0009086 GO:0009116 GO:0016787 GO:0019509
180.100.6192.680.190.922iscD GO:0003824 GO:0004731 GO:0006139 GO:0009116


Consensus prediction of GO terms
 
Molecular Function GO:0008782 GO:0008930
GO-Score 0.63 0.63
Biological Processes GO:0009164 GO:0019509 GO:0019284
GO-Score 0.63 0.63 0.56
Cellular Component
GO-Score

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
1. J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8, 2015.
2. J Yang, Y Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.
3.A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738, 2010.
4.Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40, 2008.