[Home] [Server] [About] [Statistics] [Annotation]

I-TASSER results for job id Rv1021

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]

 Input Sequence in FASTA format
 Predicted Secondary Structure
 Predicted Solvent Accessibility
 Predicted Normalized B-facotr
 Top 10 threading templates used by I-TASSER
 Top 5 final models predicted by I-TASSER

(For each target, I-TASSER simulations generate a large ensemble of structural conformations, called decoys. To select the final models, I-TASSER uses the SPICKER program to cluster all the decoys based on the pair-wise structure similarity, and reports up to five models which corresponds to the five largest structure clusters. The confidence of each model is quantitatively measured by C-score that is calculated based on the significance of threading template alignments and the convergence parameters of the structure assembly simulations. C-score is typically in the range of [-5, 2], where a C-score of higher value signifies a model with a high confidence and vice-versa. TM-score and RMSD are estimated based on C-score and protein length following the correlation observed between these qualities. Since the top 5 models are ranked by the cluster size, it is possible that the lower-rank models have a higher C-score in rare cases. Although the first model has a better quality in most cases, it is also possible that the lower-rank models have a better quality than the higher-rank models as seen in our benchmark tests. If the I-TASSER simulations converge, it is possible to have less than 5 clusters generated. This is usually an indication that the models have a good quality because of the converged simulations.)
 Proteins structureally close to the target in PDB (as identified by TM-align

(After the structure assembly simulation, I-TASSER uses the TM-align structural alignment program to match the first I-TASSER model to all structures in the PDB library. This section reports the top 10 proteins from the PDB that have the closest structural similarity, i.e. the highest TM-score, to the predicted I-TASSER model. Due to the structural similarity, these proteins often have similar function to the target. However, users are encouraged to use the data in the next section 'Predicted function using COACH' to infer the function of the target protein, since COACH has been extensively trained to derive biological functions from multi-source of sequence and structure features which has on average a higher accuracy than the function annotations derived only from the global structure comparison.)


 Predicted function using COACH

(This section reports biological annotations of the target protein by COACH based on the I-TASSER structure prediction. COACH is a meta-server approach that combines multiple function annotation results from the COFACTOR, TM-SITE and S-SITE programs.)


  Ligand binding sites

Rank C-score Cluster
size
PDB
Hit
Lig
Name
Download
Complex
Ligand Binding Site Residues
10.40 9 2p06A MG Rep, Mult 119,122,138,141
20.13 3 3crcA ATP Rep, Mult 265,266,269,307
30.06 2 2yxhA MG Rep, Mult 119,145
40.03 1 4qi1C MPG Rep, Mult 112,115,144,152
50.03 1 3tuvA ATP Rep, Mult 212,213,214,217,218,221,224
60.03 1 2zj5A ADP Rep, Mult 221,224,245,246,247,248
70.03 1 3j47V III Rep, Mult 143,147,150

Download the all possible binding ligands and detailed prediction summary.
Download the templates clustering results.
(a)C-score is the confidence score of the prediction. C-score ranges [0-1], where a higher score indicates a more reliable prediction.
(b)Cluster size is the total number of templates in a cluster.
(c)Lig Name is name of possible binding ligand. Click the name to view its information in the BioLiP database.
(d)Rep is a single complex structure with the most representative ligand in the cluster, i.e., the one listed in the Lig Name column.
Mult is the complex structures with all potential binding ligands in the cluster.

  Enzyme Commission (EC) numbers and active sites

RankCscoreECPDB
Hit
TM-scoreRMSDaIDENaCovEC NumberActive Site Residues
10.0602cqsA0.3346.710.0500.5822.4.1.20104
20.0603l4uA0.3796.000.0450.6063.2.1.20,3.2.1.3NA
30.0601b0pA0.3746.700.0430.6431.2.7.1NA
40.0603hmjA0.3796.780.0430.6612.3.1.86NA
50.0603cxhL0.3755.910.0510.5821.10.2.2NA
60.0602qmiA0.3905.810.0500.5913.5.2.6NA
70.0603bnjA0.3556.800.0490.6221.7.2.275,165
80.0601qdbA0.3786.530.0440.6311.7.2.275
90.0603b9jJ0.2516.570.0410.4281.17.1.4,1.17.3.2199,208
100.0601hr9F0.3656.230.0710.5853.4.24.64138
110.0602cvpA0.3696.520.0350.6005.3.1.9NA
120.0602fgeA0.3916.730.0270.6773.4.24.-NA
130.0602zj7A0.3726.480.0450.6253.1.1.3120,246
140.0602pdaA0.3736.710.0460.6461.2.7.1NA
150.0601q50A0.3706.220.0350.5825.3.1.9NA
160.0602g49A0.3826.170.0270.6063.4.24.56NA
170.0601ygpA0.3926.720.0510.6742.4.1.1NA
180.0603b9jI0.2045.080.0360.2951.17.1.4,1.17.3.2NA
190.0601bxrA0.3716.320.0350.6226.3.5.5NA

(a)CscoreEC is the confidence score for the EC number prediction. CscoreEC values range in between [0-1];
where a higher score indicates a more reliable EC number prediction.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided
by length of the query protein.

  Gene Ontology (GO) terms

Homologous GO templates in PDB 
RankCscoreGOTM-scoreRMSDaIDENaCovPDB HitAssociated GO Terms
00.500.5821.860.310.623craA GO:0000166 GO:0005524 GO:0006203 GO:0009267 GO:0016787 GO:0046047 GO:0046052 GO:0046061 GO:0046076 GO:0046081 GO:0046872 GO:0047429 GO:0047693
10.090.3002.750.240.342yxhA GO:0006203 GO:0046047 GO:0046052 GO:0046061 GO:0046076 GO:0046081 GO:0046872 GO:0047429
20.060.4016.680.060.694bb9A GO:0000060 GO:0005634 GO:0005654 GO:0005737 GO:0005829 GO:0005975 GO:0009750 GO:0010827 GO:0030246 GO:0033132 GO:0046415 GO:0070095 GO:0070328
30.060.4086.600.070.694lc9A GO:0000060 GO:0001678 GO:0004857 GO:0005634 GO:0005654 GO:0005737 GO:0005739 GO:0005829 GO:0005975 GO:0006006 GO:0009750 GO:0019899 GO:0019904 GO:0030246 GO:0033132 GO:0033133 GO:0034504 GO:0043086 GO:0051594 GO:0070095
40.060.3396.390.040.563jblA GO:0000166 GO:0002218 GO:0002376 GO:0004842 GO:0004869 GO:0005524 GO:0005634 GO:0005737 GO:0005829 GO:0005876 GO:0006915 GO:0006919 GO:0006954 GO:0009966 GO:0016045 GO:0016567 GO:0042742 GO:0042802 GO:0042803 GO:0042981 GO:0043065 GO:0043281 GO:0045087 GO:0050702 GO:0051092 GO:0051260 GO:0070269 GO:0072557 GO:0090307 GO:1990001
50.060.3936.460.030.664kxfP GO:0000166 GO:0002218 GO:0002376 GO:0004842 GO:0004869 GO:0005524 GO:0005634 GO:0005737 GO:0005829 GO:0005876 GO:0006915 GO:0006919 GO:0006954 GO:0009966 GO:0016045 GO:0016567 GO:0042742 GO:0042802 GO:0042803 GO:0042981 GO:0043065 GO:0043281 GO:0045087 GO:0050702 GO:0051092 GO:0051260 GO:0070269 GO:0072557 GO:0090307 GO:1990001
60.060.2966.570.030.501a4yA GO:0005654 GO:0005737 GO:0006402 GO:0008428 GO:0032311 GO:0043086 GO:0045765 GO:0070062
70.060.3046.390.040.502bnhA GO:0005737
80.060.2736.680.040.463tsrE GO:0005654 GO:0005737 GO:0008428 GO:0032311 GO:0043086 GO:0045765 GO:0070062
90.060.2767.280.050.514perA GO:0005654 GO:0005737 GO:0008428 GO:0032311 GO:0043086 GO:0045765 GO:0070062
100.060.4206.460.060.703w0lB GO:0005634 GO:0005654 GO:0005737 GO:0005975 GO:0030246 GO:0033132 GO:0070095
110.060.3557.110.020.653abzA GO:0000272 GO:0004553 GO:0005975 GO:0008152 GO:0008422 GO:0016787 GO:0016798 GO:0030245 GO:0102483
120.060.2176.850.040.373od1B GO:0000105 GO:0004812 GO:0005737 GO:0006418 GO:0008652
130.060.3376.930.020.603abzB GO:0000272 GO:0004553 GO:0005975 GO:0008152 GO:0008422 GO:0016787 GO:0016798 GO:0030245 GO:0102483
140.060.2806.840.040.491e3eA GO:0001523 GO:0003960 GO:0004022 GO:0004024 GO:0004032 GO:0004745 GO:0005503 GO:0005737 GO:0006066 GO:0006067 GO:0006069 GO:0006081 GO:0008270 GO:0016491 GO:0016620 GO:0019115 GO:0019841 GO:0035276 GO:0042572 GO:0046164 GO:0046872 GO:0051287 GO:0055114 GO:1901661
150.060.2436.110.050.392zfuA GO:0000183 GO:0005634 GO:0005654 GO:0005677 GO:0005730 GO:0005737 GO:0005886 GO:0006351 GO:0006355 GO:0006364 GO:0008168 GO:0008757 GO:0016568 GO:0016740 GO:0032259 GO:0033553 GO:0035064 GO:0042149 GO:0044822 GO:0046015 GO:0071158 GO:0072332
160.060.2427.100.050.453n29A GO:0003824 GO:0005737 GO:0006596 GO:0008295 GO:0016829 GO:0016831 GO:0030170 GO:0042803 GO:0045312
170.060.2476.310.020.402qu7A GO:0003677 GO:0003700 GO:0006351 GO:0006355
180.060.2387.130.050.444lzjB GO:0005975 GO:0006040 GO:0009254 GO:0016829 GO:0016835 GO:0030246 GO:0046348 GO:0097173 GO:0097175


Consensus prediction of GO terms
 
Molecular Function GO:0046872 GO:0005524 GO:0047693
GO-Score 0.55 0.54 0.50
Biological Processes GO:0046076 GO:0046061 GO:0006203 GO:0046052 GO:0046047 GO:0046081 GO:0009267
GO-Score 0.55 0.55 0.55 0.55 0.55 0.55 0.50
Cellular Component GO:0043231 GO:0044444
GO-Score 0.36 0.36

(a)CscoreGO is a combined measure for evaluating global and local similarity between query and template protein. It's range is [0-1] and higher values indicate more confident predictions.
(b)TM-score is a measure of global structural similarity between query and template protein.
(c)RMSDa is the RMSD between residues that are structurally aligned by TM-align.
(d)IDENa is the percentage sequence identity in the structurally aligned region.
(e)Cov represents the coverage of global structural alignment and is equal to the number of structurally aligned residues divided by length of the query protein.
(f)The second table shows a consensus GO terms amongst the top scoring templates. The GO-Score associated with each prediction is defined as the average weight of the GO term, where the weights are assigned based on CscoreGO of the template.

[Click on result.tar.bz2 to download the tarball file including all modelling results listed on this page]



Please cite the following articles when you use the I-TASSER server:
1. J Yang, R Yan, A Roy, D Xu, J Poisson, Y Zhang. The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12: 7-8, 2015.
2. J Yang, Y Zhang. I-TASSER server: new development for protein structure and function predictions, Nucleic Acids Research, 43: W174-W181, 2015.
3.A Roy, A Kucukural, Y Zhang. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5: 725-738, 2010.
4.Y Zhang. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40, 2008.